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I. INTRODUCTION AND FORMULATION OF THE PROBLEM

During the recent past, there has been considerable interest in various
classes of polynomial spline functions and the minimization problems which
arise when these classes are endowed with the Chebyshev norm. The prototype
of all these problems is Chebyshev’s: Find the polynomial P,,_;(x) of degree
at most m — | such that the quantity

max X = P,,,,,](\\')!
—1-2x:1
is minimal; this leads to the classical monic Chebyshev polynomials. Much
later the problem was generalized to the case of monosplines (see [3, 9]).
IFor example, Johnson considered the problem of minimizing the gquantity

m;?(l X S0

where 5,1 (x) is any spline function of degree n -~ | with & simple knots,
and he was able to characterize the unique solution to this problem in terms
of certain alternation properties.

More recently, Schoenberg and the present author have been considering
another important class of functions: the perfect splines. To define this class
let m and & be natural numbers. A function P(x) is a perfect spline of degree m
having & distinct simple knots in the open interval (— I, 1) if there are points

-1 < xy <7 xy, <C e <7 X, <2 | such that

= This paper constitutes a doctoral thesis prepared under the guidence of Professor
I. J. Schoenberg and submitted to the University of Wisconsin, Madison. The author
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(a) the restrictions of Plx) to each of the intervals ¢ I, x;),

(X3 » Xo)oors (X1 X (x5, 1) are polynomials of degree m.
(b) P(x)e Cv—1I,1],

{¢) | Pi(x) = m!. except at the knots, where the mith derivative
may fail to exist.

We denote the class of such functions by .7, , . This definition is due to
Glaeser [2]. However, earlier such functions played a central role in some of
Favard’s work on interpolation with functions whose mth derivatives are of
minimal sup-norm [I].

While deriving best possible inequalities between the norms of the
derivatives of a function defined on the half line [8], Schoenberg and the
author were lead once again to the notion of a perfect spline. As a small part
of this work, we considered the following problem of Chebyshev type:
Determine within the class of perfect splines :Z, , the perfect spline £, (x)
of least /. ,-norm on [--1. 1], re.. find P, , such that

P mt sup o Px). (L.1)

Pty —1 0

In the case where & = 0, this reduces to the classical Chebyshev problem.
Since the & knots are themselves variable. we see that the family #, ,. depends
on m - k parameters, and so we should expect the optimal solution to have
nm - k - | points at which the extreme values - P, ', are assumed with

alternating sign. This indeed turned out to be the case and we established the
following theorem [8].

THEOREM.  There is a unique P,, (x) satisfying (1. 1) and it is a perfect spline
of degree m with k simple knots. Moreover, P, ,(x) has precisely m -k -+ |
points of equioscillation, and this characterizes the optimal solution to (1.1).

As a simple illustration of this theorem, we can construct explicitly P, ;.
for arbitrary k. say k == 3. Let T,(x) be the quadratic Chebyshev polynomial
pictured in Fig. I, and let x <~ 8 be its two zeros. In Fig. 2, we have started
with 7,(x), cut off at 8. Then we have attached on arcs of T,(x) restricted to
[, 8], but inverting them as necessary to obtain a C' composite function.
Finally on [£, . b] we describe an arc identical to - T,(x) restricted to [, 1].

FiGure 1 FIGURE 2
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Thus. & - & = &, — & = B — x. By a change of variables converting the
interval [a, A] to [-—1, 1] and normalizing the new function so that its highest
degree coeflicients are --_1, we obtain a perfect spline satisfying the conditions
of the above theorem. Indeed, m -~k || =2 =« 311 =6, which is
precisely the number of extrema exhibited in Fig. 2.

For higher degrees, constructions analogous to the above break down
because we fail to get composite functions of a sufficiently high continuity
class. However, by using the methods of linear programming together with
differential corrections for the nonlinear parameters. these optimal perfect
splines can be computed with some accuracy (see [8]).

One of the beauties of spline function theory is that, unlike polynomials,
a spline function can remain bounded on the whole real axis, provided, of
course, it can have infinitely many knots. This being the case, it is natural
to pose certain Chebyshev-like problems for splines on the entire real axis.
instead of a finite interval. For the monospline case, the problem was
clegantly handled by Schoenberg and Ziegler [9], and we wish now to
investigate the perfect spline case. Specifically we consider the following class
of functions.

DrrmNniTion.  Letsn by any natural number and letr = — 1,0, 1....m — 1.
The class 2,7 == { P(x)} consists of all functions with the following two
properties:

(1) Poye C(R).

(i) Let v be any integer. P(x) restricted to {2v, 2v = 1] is a polynomial
of degree m with highest term x. P(x) restricted to [2v — 1. 2v] is a poly-
nomial of degree /m with highest term -—x".

The case when r -- —1 means that (i) is vacuous, there being no continuity
requirements between the separate polynomial components of P(x). Clearly
LPYI X)) m! , except at the integers where the mth derivative is undefined,
and so the word “perfect,” in the sense of Glaeser, applies to our class. Also,
the knots have been fixed at the integers, and so we deal with the so-cailed
cardinal splines [7]. Therefore, it is appropriate to call the functions defined
above cardinal perfect splines of degree m with m — r fold knots. Our main
concern then is the following problem.

Problem. To determine
P(xye A7
having least Chebyshev norm
i Pl = sup | P(x).
reR

This problem can be solved using the ideas of Schoenberg and Ziegler [9].
Our results complement and in some sense complete their work.
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2. Tur CASES r = — 1 AND r mo-

We can dispose of these two extreme cases rather easily. The problem is
indeed quite trivial when r -- - I, for then there is no continuity requirement
at the integers. To describe the optimal perfect spline, let us denote by 7,,(x)
the usual Chebyshev polynomial for [--1, 1]. Set

2 WlT Dy ] 0= n o L
P(—"d")_?:m l;/- - ) SN

and extend this definition periodically with period 2. So P(x)< .~} and
clearly solves the problem for this case.
Forr = m 1 we need the so-called Euler polynomials £,,(x). defined as

the polynomial solution of the functional equation

e

T A DI A OV) IR (2.1)

It is easily seen that the Euler polynomials satisty the boundary conditions
EVoy - BV 0, ] (2.2)

if m "= 1 and that they are thereby determined up to an additive constant and
a multiplicative scalar factor. From these relations we sce that the extension
E,(x), defined by

E (x)- E,(x) for 0 . x « | (2.3)
and

E (x + D —E(x) for all x. (2.4)

is a spline function of period 2 with simple knots at the integers. Following
Schoenberg [7] we call this composite function the Euler spline. Now from
(2.1) we find that the Euler polynomials satisfy the differential equation

dE, (xYdx . mE, J(x). (2.5)
and so

EMyy = mlEfx) - m!
whence

Exye7n 1 (2.6}

i

We can now prove our first theorem.

THEOREM 1. Of all P(x) e #7* only E, (x) has least sup-norm.

He
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Proof. For suppose to the contrary that there exists P(x)e.Z. " and
| P(x). = E (), . Then S(x) = E,(x) — P(x) is a polynomial of degree
at most 1 — 1. Because of the oscillatory behavior of E, (x), S(x) must have
infinitely many zeros: hence, S(x) = 0. 1|

3, RESULTS FOR O < r < m — 2

In this section we shall simply describe the results and defer the proofs to
the later sections.

We have just seen that in the two extreme cases. our problem is solved by
appropriate extensions of either the Chebyshev polynomials or the Euler
polynomials. For the intermediate cases 0 =J r <X m - 2, a solution will
depend on a new type of polynomial. and since these new polynomials will
enjoy a blend of the properties of the Chebyshev and Euler polynomials,
we would like to call them the Euler—Chebyshev polynomials, or more
shortly, ET-polynomials.

The construction of the ET-polynomials depends on a new property of the
Euler polynomials, and so it will be helpful to recall what these classical
polynomials look like: see Norlund [5].

FIGURE 3

We note that the odd order Euler polynomials are odd about x == | with
a zero at x - 1, while the even ones are even about x = 4 and have zeros
at x == 0 and x == 1. So the functions defined by

Forslx)  Eo o(0)/(x — 1) (3.1)
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and
£o(x) Eo (x)/x (3.2)

are polynomials.

Now let us recall the definition ol a real Chebyshev set on an interval /.
A set @ of continuous real functions ¢, ,.... ¢, defined on /is a Chebysher
system if the following condition is satisfied: Each nontrivial polynomial
P aydy - 0 b oa,d, has at most a I distinct zeros on /. Such systems
are particularly important in approximation theory because of the character-
ization theorems for best approximation from such systems.

At any rate. with these definitions in mind we can state the foilowing
theorem.

THEOREM 2. Let i - p - g. Then the set of functions

~ ~ o

bzp(»’()s [1“2;) Z{X) """ E:Z'/(’\‘)

Jorms a Chebysher systen on the closed interral [0, 1].

And we can also state the next theorem.

THEOREM 3. Let O p - g. Then the set of functions

by (), E, wial¥)e Ez-«/ 11{Y)

Jorms a Chebysher sysrem on the closed interval [0, L.

We can also establish the following proposition, which is very similar to
Chebyshev's theorem characterizing best approximations.

PROPOSITION 1. Let | fi(x)..... [,(x)} be a Chebysher system on [a, b} and
define
gAx) = (X -a)f(x) [ 2., k. (3.3)

Let F(x) be a contimous function on [a, b] vanishing ar a. Then there exists a
unique linear combination S, | a;g{x) of best approximation in the uniform
norm to F(x). This best approximation is uniquely characterized by a k ; |
point equioscillation property, ie.. there exist k -1 points a - x, -
Xy <o < Xy b where the error function assumes the value of its norn:
with alternating signs.

We can now easily describe the ET-polynomials. Using Theorem 2 and
Proposition | together with the fact that E,(x) vanishes at x - 0, we define
the ET-polynomial E,, ,,_,(x) as the unique polynomial of the form

EZ!{,‘Zp—-l(x) = EZQ(X) '}_ ('<,—pE20~z(x) Tttt T ('11521)(~\”) (34)
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with the property that in the interval {0, §]

" Eypapa | - minimum. (3.5)

COROLLARY 1. The polynomial E.,, ., ((X) is uniquely defined among all
polynomials of the form (3.4) by the following equioscillation: There are
g~ p | points x, satisfying O - x; < Xs <l <1 X, ., = L osuch that
Eayopa(x,) assumes the value of ' E,, ., |, with alternating signs as v runs

Jrom Vtog— p 1.

In a similar way and using Theorem 3 together with the fact that
Eoyq(1) == 0, we define the ET-polynomial £, ,,,(x) as the unique poly-
nomial of the form

[;"_’/I"l,'.’p(x) - Ejr;af](x) G- ))E‘_)f/—l(x) — (.IEEJ)'—I(X) (36)
with the property that in the interval [0, }]

"oty L = minimum. (3.7)

COROLLARY 2. The polynomial E,, 1 ,,X) is uniquely defined among all
polynomials of the forni (3.6) by the following equioscillation property: There
are points x, satisfving 0 - x; X)) <0 <D X, 1 <0 Y such  that
Eopiv.0)X,"Y assumes the values E.,, ., ,,!, with alternating signs as v runs
from 1V to g —p-- 1.

Now using the ET-polynomials we can construct the desired optimal
perfect splines in the cases where the degree and the order of the continuity
class are of different parity.

Consider first 220 ' By (3.4) E,,.0, 1(x) is a linear combination of even
order Euler polynomials and so is even about x .= {. Furthermore, from the
boundary conditions (2.2) enjoyed by the Euler polynomials, E,, .,_, inherits
the following boundary conditions:

EY 0y = —EY, () v =0,1....2p— 1. (3.8)
So defining
Eoyops(X) = Eap oo i(x) for 0" x < 1 (3.9)
and
Eggopy(x = 1) =7 —Egy 0 (X) for all x, (3.10)

we conclude easily that

EZq.zll—l(-\’) € ‘%grﬁpl-
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We can now state the following theorem.

THEOREM 4.  Of all P(x) € #F°Y, only E,, .. [(X) has least sup-norn:.

2p v

In a similar way we can handle :#J% ;. E,, ,.,(x) is odd about x - |,

and by (2.2) and (3.6) has the following boundary conditions:

EX L0« EY e 0,1, 2,
So defining
EoyitanX)  Espigan(x) tor 0 x| (3.11)
and
Esyiioplx = 1) EuyanlX) for all x, (3.12)

we see that
e 24
b2q 1.2 & f’q'l -

and we have the following theorem.

THEOREM 5. Of all P(x)e 43,1, only E,, | ,,(x) has least sup-norm.

As corollaries to these two theorems. we have the following.

COROLLARY 3. The polynomial E(x) -~ E,, ,_(X) IS the unique polvnomial
satisfving the following conditions:
(1) E(x) - x% .= lower c/egree rerms:
(2) EWQ) - Oy, v == 0,1, 2p
(3)  E(x) has least sup-norni in [0, 1].
COROLLARY 4. The polynomial E{x) ~ Ey, .1 .,(x) is the unique polynomial
satisfving the following conditions:
(1) E(x) = x* 1 lower degree terms:
(2) EW0) - EW1), v 0, 1,...2p:
(3)  E(x) has least sup-norm in [0, 1].

Curiously enough, the same perfect splines which settle the problem in "
when m and r are of different parity also yield the desired result when the
parity of /1 and r is the same.

THEOREM 6. Of all P(x) € P30 1, Eyy 1.0(x) has least sup-norin.
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THEOREM 7. Of all P(x) € 7322, Ey 0, (x) has least sup-norm.

The question of unicity here is as yet unsettled.

For low values of r, r = 1 and 2, the ET-polynomials can be easily
constructed explicitly. For example, consider E,,;, and let « denote the
least zero and B the largest zero of the Chebyshev polynomial T,,(x). Then
we have the following theorem.

THEOREM 8.  Ey,q(x) = 2720 UB — a) 2 T, ((1 - x) ~ Bx).

This theorem is easily verified. In the first place, the right side of the above
equality is even about x == 1 and it is a polynomial with highest term x*.
Also on [0, 4] the polynomial has ¢ points of equioscillation, and this fact
together with Corollary 1 establishes the theorem.

In a similar manner we can construct E,,_; »(x). For starting with 75, 4(x)
and denoting the least zero and the largest zero of 7,,,.(x) by «" and
respectively, we can establish as above the following theorem.

THEOREM 9. F,, ;o(x) = 2728 - ) 0T, (X1 x) - By

4, TwO LEMMAS OF SCHOENBERG AND ZIEGLER (ONCERNING
Z¥R0OS OF CARDINAL SPLINE FUNCTIONS

To state these two fundamental lemmas, we need some notation. Let .¥}*
be the class of cardinal spline functions of degree »# belonging to the continuity
class C"(R)Y (1 << r <~ i — 1). We denote by ., the subclass of -," consisting
of all splines S(.x) such that

S(x) =0 in (nu+1) for any n. (4.1)
We then count the zeros of any S(x) & .%,” in the following manner: If = is
not a knot, we have a zero of multiplicity & provided

S(z) = S'(z) = - = SUIzy = 0,
while

SW(z) = 0,

If = is a knot of multiplicity /, we may use the same definition for k -~ »n - I
Now let Z{S(x); [a. b]} denote the number of zeros of S(x), counting
multiplicities as above, in [a, b].
Lemma 1. Let S(x) e 2. Then
ZIS(x); [0, kT oon -+ (kK — 1) - ). (4.2)
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The second femma concerns functions which weakly oscillate about zero
and yields a lower bound on the number of zeros of such a function.

LEMMA 2. Let S(xye S e = L. and assume that there exist points

0 Xy Xy Yy, | (4.3)
such thar with € oo -
e( — 1Y S, = n) 0 / 1.2 2s I 0. 1., (4.4)
Then
Z18(x): [0, k] 25k 1. ko120 (4.5)

For the proofs of these two lemmas. we refer the reader to the paper of
Schoenberg and Ziegler [9].

5. ProGrs OF THEOREMS 2 AND 3

Proof of Theorem 2. Suppose. to the contrary. that the collection
E, (x), By, o(x)...., E,(x) does not form a Chebyshev sct. Then there exist
¢ p-—1lpointsO = vy < x, X, Ly 1 which are zeros for the
nontrivial polynomial

Q('\‘) (‘112‘2 ;/(X) et (‘q n 1[;‘2'/()() (0 X é)

Then by (3.2)

\Q(\') (@] Ez ,}(X) e (S 1L.z:,<»\‘) (O X })
and xQ(x) must have zeros at 0, xy, vo.oo X, L, -

Now consider the extension of xQ(x) defined by

S(6) - XO(X) - Eay ) ey B,

Then clearly S(x) e 3/ *. and in each interval [v, v ¢ 1) S(x) has at least
2¢ - 2p -~ 2 zeros. This is true even if x,_ ., 1. for then x - 1 must be
a double zero because of the evenness of £, .

Thus, we clearly must have

ZiS(x) [0,k o kQ2qg 2p - 2).
On the other hand from Lemma | we obtain

ZiSo [0, kT 0 2 F (k- 2g — 2p - 1),
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But for sufficiently large & these two inequalities are contradictory, and so
our original system must in fact be a Chebyshev system. ||

Proof” of Theorem 3. Suppose, to the contrary, that the collection
Eyy (), By (XD Euy i (X) does not form a Chebyshev set. Then there
exist ¢ — p -+ 1 points 0 =0 x| <Z xy =2 =+ < X, ,,; . » which are zeros
for the nontrivial polynomial

Olx) - K,y q(x) - CZEZI!;ii(‘Y) S PR 1I?zr¢f1(~\’)o

Then by (3.1)

1) Q - ’ml “\) ﬁzpv:i(/\') ot Cy ~1'»1E2'17‘71(-\‘)
and (x -- }) Q(x) must have zeros at

P ~ . .1
Xp <Xy <C ot <D Xypaq e X paw TR S

Now consider the extension of (x -- 1) O(x) defined by

S(x) = (v — 1) O(x)

== By () CoEsy 5(X) b G Eag a (V).

Then dedrl} S(x) e /’f{,’ 1 - Counting the zeros of S(x) in any interval
[v.v -~ 1), we find:
it x; = 00X <,

qepil

. then 2¢ — 2p -{ 3 zeros;
ifx; =0, x,_,,, << 3. then 2¢g — 2p + 2 zeros;

if x, ~0,x,,,==1 then 2¢ — 2p - 3 zeros;

o AT e e

if x; == 0. x,_,.; == L. then 2¢g — 2p - 2 zeros.

So in any case we have
Z38(x): [0, kT3 2 k(29 — 2p 4 2),
while by Lemma 1
Z{S(x): [0, kY 2 2g - 1 = (b — D(2g — 2p = 1.

Again for sufficiently large & these two inequalities are contradictory, and
so our set must be a Chebyshev system. |
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6. PrOOF OF PROPOSITION |

Clearly from the linear theory, we know that there exists a polynomial of
best approximation (see Lorentz [4, p. 17]). Suppose

.
P(x) = Y ¢, gdx) (6.1)
i=1
is such a best approximation to F(x), i.e.,
F(x) -~ Py = { Flx)— Py,
where f’(.\') is any other linear combination of the form (6.1). We show that

Mx) = F(x) - Plx)

must take on the values — { with alternating signs at & -1 1 points.
Set

AT ixea, b)) hix) .

A= —ix < a. bl hix) I
and
A=A UA".
Clearly these sets are closed and A* N 4~ == . Now if there does not exist

a k 4 1 point equioscillation, then we must be able to divide [a, 5] into at
most & mutually disjoint open intervals

such that

4 ClU)h, .
U ke (6.2)
A-C U1,

(or perhaps the other way around).
Now using the Chebyshev property of the f,(x), we can easily construct

k
O(x) - - Z bifi(x)
i= 1
so that
QO(x) <. 0 on U/,

{6.3)
O(x) 0 on UL, .
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It follows that
(x—a)Q(x) <0 on J/bhi.

(6.4)
(x —a)Q(x) >0 on L,
and (6.2) and (6.4) together imply
max (x == a) OQ(x) h(x) <2 0. {6.5)

(6.5) contradicts the Kolmogorov condition for a best approximation
(see [4.p. 18]). So we conclude that A(x) must exhibit & + 1 points of
equioscillation, as claimed.

Conversely, let us assume that there exists a P(x) of the form (6.1) such that

A(x) == F(x) — P(x)

has k - 1 points of equioscillation, and || i(x) = {. We then claim that P(x)
must be the unique best approximation to F(x). For suppose there were to
exist some P(x) of the form (6.1) with

FF(x) - Pyl < L (6.6)

and consider .
g(x) < (F(x) — P(x)) — (F(x) — P(x))
= P(x) — P(x). (6.7)

Now gta) = 0 and there are & more zeros because of (6.6) and the equi-
oscillation requirement. So g(x) has atleast & -+ 1 zeros. But by (6.7) and (3.3)

s I
g(x) =Y egix) (v —a) Y efiy) = (x — a) f(x),
i1

i1

where f(x) = szl c.fi{x). Then f(x) must have k zeros, which contradicts
our assumption that the f;(x) form a Chebyshev system. [

7. PROOFS OF THEOREMS 4 AND 5

Turning our attention to Theorem 4, we consider £,,.,,.,(x) and denote by
0 < Xp =0 Xy <Dt <D Xgep g = 3

its ¢ — p —- 1 points of equioscillation. That x,_,_, - = { is indeed a point of
equioscillation for iy, ,,.4(x) 1s easily shown by arguments similar to those
which established Theorems 2 and 3. Define

Xog_opao_; = 1 —X; i=l..,q —p.
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Then since E,, ., ; is even about x L and periodic. we see that the
function attains extreme values with alternating signs at the 2¢ - - 2p |
points x; in (0, 1) and at all points congruent to these modulo I.

Now to show that £,,,, ; is of least sup-norm within the class .#3" .
suppose to the contrary that there did exist F(x) ¢ .#5/ " such that

i F(\) B i EE«/.:;) I(“() [ (7. ])
Consider the spline function
Stx)  Es, ., qlx) — Flx), (7.2)

which we suppose does not vanish identically. Note that

In fact

For if not. then we can assume that for some »n

S(x) -0 i | X ,
S(x) 0 T X n-o .

However, S(x) e C*~1(R), and so we must have
S(x) = Y edx — ) for - x:..on L. {7.5)

where not all of the ¢, vanish.

But by (7.1) and (7.2) together with the 2¢ - 2p -~ 1 point equioscillation.
we conclude that S(x) must have 2¢ — 2p zeros in the interior of [n, 1 -!- 1],
and when we count the zero of multiplicity 2p 1 at x - », we find that
S(x) has 2g zeros in [n, n - 1], which is a contradiction since S(x) is a
polynomial of degree 2¢ — | there. So S(x) e F3/7}.

So we can use Lemma 2 to conclude that

ZiS(x): [0, k1! == kQ2qg - 2p -~ 1) — 1. (7.6)
On the other hand, Lemma 1 shows that
ZiS(x); [0. k] < 2g — 1 b (k- D)(2g — 2p)

which contradicts (7.6) for large k. This settles Theorem 4. |
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Theorem 5 is handled in a similar manner, and so may be passed over
without due concern.

8. PROOFS OF THEOREMS 6 AND 7

For these two final theorems, we need a new approach. We will use the
Rivlin—Shapiro criterion for a best approximation, but this criterion, like the
Kolmogorov criterion, is only applicable when the space in which the
approximation is sought is finite dimensional. It is well known that the space
of spline functions with infinitely many knots is not finite dimensional, and,
therefore, we will have to seek some way to transform our problem to a finite
dimensional setting.

The way home is indicated by Theorems 4 and 5. There it turned out that
the optimal splines satisfied the relation F(x -- 1) == - F(x) for all x, and
that this is no accident is shown by the following lemma.

Lemma 3. If F(x) is an element of &, of finite sup-norm {, then there exists
an element F¥(x) of P,” whose norm is <. {, and this element has the following
periodicity relation:

F¥x — 1) = —F*(x) for all  x.

Proof.  Consider the sequence of functions

n-1
Fo(x) == lin Y (= 1) F(x - v) n==1,2...

p=l)
These functions obviously belong to #," and moreover

iFn(x)lloc g

The sequence {F,} is compact. In fact, on the interval [0, 1], we have merely
a uniformly bounded sequence of mth degree polynomials which, therefore,
clearly has a convergent subsequence. This observation is valid for every
subsequence in each unit interval, and so we can use the standard diagonal
process to establish the existence of a subsequence F,(x) convergent on
{— o0, o0) and the convergence will be uniform on compact intervals.

Denote the limit function by F*(x). Then clearly| F* |, < {, and F* e #,".
As for the periodicity relation, consider

n-1
Fux =1 =1/nY (=1yF(x - 1+v)

y=0

U S (1Y FC )+ Un)EG) - (-1 EG ),

640/8/4-2
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Letting n = #n, - » 20, and using the boundedness of Fon{ . 0} we obtain
FAx = 1) - —F¥x). |

Before turning to the proof of Theorem 6, let us recall the Rivlin-Shapiro
criterion for the reaf case ([6]: see also [4, Chapter 2, Section 3]). We consider
a real Banach space C[/], where I is any compact set, in particular [0, 1].
Also suppose we have a finite set of real-valued functions @ C C[/], and let Q
denote any element in the n-dimensional linear span of @. Then a (real)
signature o on / is a function whose support consists of a finite number of
points and whose values are --1. Such a signature ¢ with support
S = {x1,... x,} will be called an extremal signature (with respect to the
system @) if there exists a function p with support S for which

sign wix,) = o(x,) A 1L 2.r
and

Z nu’(xlc) Q('\‘/w) -0
Lo

for all @-polynomials Q. Then we can state the following.

CRITERION (Rivlin~Shapiro). A4 D-polynomial P, not identically equal to
the function f € C[l], is a polynomial of best approximation for f if and only if
there exists an exiremal signature o with support S = {x, ... x,} contained
in the set of equioscillations of f — P and such that

roeton -+l

and
sign{f(x,) — Plxp)] = olx;) k==L 2..r

We can now turn to Theorem 6. From Corollary 4 we have that £, 25(X)
is of all polynomials of the form
29

Eser(¥) 4 ) cELX)

v=2p+1

the one which has least sup-norm on [0, 1]. This may also be viewed as the
error function obtained when approximating E,,,,(x) by linear combinations
of the Euler polynomials E{x), v = 2p - 1...., 2¢, in total 2¢ ~ 2p functions.
We would expect a 2g - 2p - 1 point equioscillation property for the error
function, but in fact on [0, 1], £s,,; s, has 2¢ - 2p - 2 points of equioscil-
lation. This difference leads us to suspect that even if we increase the
dimension of the approximating space by adjoining the function £, ,(x) we
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will still get the same best approximation to £, 4(x). And in fact the above
Lemma 3 shows that this observation is essentially the content of Theorem 6.

Proof of Theorem 6. Using the Rivlin-Shapiro criterion, we show that
Es,.1.2,(X) Is a best approximation of E,,.;(x) by elements of the 29 - 2p + |
dimensional subspace

Eyp(X)s Es (X5, Esy(X). (8.1)

As before let x,/, i = I,..,q -- p - 1, denote the equioscillations of
Eyyi1.05(x) in [0, 1) described in Corollary 2. Define

Nogooprzi c= L= X/ i=lo,g—p+L
The set {x;," | i = 1,..., 2¢ — 2p -+ 2} exhibits all the points of equioscillation
in [0, 1] for E,q,1 2p(x). To show that the Rivlin-Shapiro criterion is satisfied,
we must prove that there exists a set of weights w, ...., Wa,_sp1o SUch that
20—-2p+2
Yo wE) =0 v =2p,2p - 1,..,2q, (8.2)
j=1
and
the weights alternate in sign. (8.3)

Select skew-symmetric weights, as follows:

wp = (=1 P
i=1,2,..qg —p 1, (8.4)

Wog2pt+3—i — Wi,

where the P;’s are positive and are to be determined.

By the symmetries involved, relation (8.2) is valid for all even degree
polynomials E,,(x). We need only prove that for a suitable choice of positive
numbers P ,..., Py, (8.2) will hold for the odd degree Euler polynomials.
The odd symmetry of E,,.,(x) about | indicates that (8.2) will hold if the P;’s
satisfy

g-—-p+1

y (1" PiEs, (x/) = 0, v=p,p l,g—1 (8.5)
=1

This amounts to a homogeneous system of ¢ — p equations in the
g — p -+ 1 unknowns P; . It follows easily from Theorem 3 that all minors
of order ¢ — p of the coefficient matrix of this system are strictly of one sign,
and, therefore, (8.5) admits a solution with P; > 0. So the Rivlin-Shapiro
criterion is satisfied, and Theorem 6 is complete. [
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Proof of Theorem 7. Here we proceed much like above. We wish to prove
that £,, ., ,(x) is the best approximation to E,,(x) using linear combinations
of the 2¢ — 2p -I- | functions

Eey ), EnyfX)oee Euy ().

Denote as in Corollary [ the ¢ — p -- 1 points of equioscillation of E,, ,,;(.x)

1

0 Xy Xy Xy

and define
Nog ap ooy = b X i l....q - p.

Then the set {x, /- 1,2....2¢g - 2p - || exhibits all the points of equi-
oscillation in [0, 1] of F,, ., ;(x). We now must exhibit a sct of weights
Wy, W ..., Wy, s,.1 such that

2q- 2p 1
YoowiE(x) 0 v 2 1, 2q ] (8.6)
i
and
the weights alternate in sign. (8.7)

We select symmetric weights as follows:

w

) A P== 1, 20, ¢ —p -1,

i (8.8)
W, i=1,2....q9—p,

“ﬁqw‘:p 2. T i

where P, - 0. These weights clearly satisty (8.7) and due to the symmetries
involved (8.6) is valid for the odd degree Euler polynomials. For the even
degrees, (8.6) is a consequence of

q—ptl

2 (1)1 P,E, (X)) 0, v pp o b, g - L (8.9)

i=1

a system of ¢ - p equations in ¢ — p | | unknowns, and as before by
Theorem 2 this system has a positive solution P; = 0.
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